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A Project Abstract

To meet the military’s increased need for rapidly deployable communication solutions, wireless
networks are becoming increasingly common within tactical environments. Frequency hopping
(FH) is widely used for radio transmission in such networks due to its low probability of de-
tection/interception. With the increasing deployment, multiple networks occupying overlapping
frequency bands are likely to coexist in a physical environment, especially in tactical operations,
emergency situations, or dense-populated areas. Consequently co-channel interference due to fre-
quency collisions can become a major performance limiting factor. In this project, we developed a
novel interference mitigation technique based on multidimensional frequency estimation coupled
with the expectation-maximization principle, which effectively resolves collisions among non-
collaborative networks, thus enabling robust coexistence of multiple FH networks. To deal with
possible receiver-transmitter mismatch, we also designed a low-complexity model order variation
detection method. Novel multidimensional frequency estimation algorithms are also investigated.
The significance of this project in basic research lies in innovative schemes for collision resolution
enabling interference-robust FH networking.

B Technical Report

B.1 Problem Statement

To meet the military’s growing need for rapidly deployable communication solutions, wireless net-
works are becoming increasingly common in tactical environments. For example, military units
(e.g., soldiers and tanks), equipped with wireless devices, could form multiple networks in tactical
operations when they roam in a battlefield. Frequency hopping spread spectrum (FHSS) is widely
used for radio transmission in such networks, due to its low probability of detection/interception
[1]. For example, FHSS is adopted in the single channel ground-airborne radio system (SINC-
GARS), which is the current standard army combat net radio. Recently FHSS has also been
adopted in commercial applications such as Bluetooth [2].

Because of their increasing deployment, multiple (homogeneous and/or heterogeneous) wire-
less networks with overlapping frequency bands are likely to coexist in a physical environment,
especially in tactical operations, emergency situations, or dense-populated areas. Consequently
co-channel interference due to frequency collisions can become a major performance limiting fac-
tor [3–5]. When collisions occur, network throughput decreases and delay can become excessive
due to retransmissions. Theoretical analysis has shown that the packet error rate (PER) of one
Bluetooth piconet due to collisions can be up to 10% if seven piconets coexist [6], and a Bluetooth
receiver may experience up to 27% packet loss for data traffic in the presence of interference from
an IEEE 802.11b based wireless local area network (WLAN) [7].

Recently the coexistence issue has gained increasing attention [8–14]. However, to date most
coexistence schemes are designed for simultaneous functionality of a Bluetooth piconet and an
802.11b WLAN. The latter is a direct sequence spread spectrum (DSSS) network that occupies a
fixed frequency band of 22 MHz. In this project, we study the problem of coexistence of multi-
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ple FH networks, where the interfering frequency channels are constantly changing and the hop
sequence of one network is unknown to another. We develop a physical layer method to mitigate
co-channel interference and enable robust coexistence of multiple FH networks.

B.2 Prior Work

Most coexistence methods are developed for simultaneous function of a Bluetooth piconet and
a WLAN, based on various MAC layer mechanisms that enable the Bluetooth devices to avoid
hopping onto the frequency band occupied by the WLAN. Other methods mitigate co-channel
interference with physical layer approaches.

B.2.1 Collision Avoidance for Coexistence of Bluetooth and WLAN

The collision avoidance techniques can be classified as collaborative and non-collaborative ones.
For collaborative cases, attractive data transmission rates and throughput can be achieved by using
a communication link between the Bluetooth and WLAN when they are embedded on the same
device [15] or by coordinating the hop frequencies of the co-located Bluetooth devices [8].

Non-collaborative methods do not require direct communication between the two networks,
and they usually rely on monitoring the channel to detect interference and estimate traffic. For ex-
ample, power control is employed based on PER [9] or the received signal strength [10] to sustain
the quality of service for a Bluetooth link. To avoid hopping onto preoccupied frequency chan-
nels, adaptive frequency hopping (AFH) modifies the Bluetooth frequency hopping sequence, and
Bluetooth interference aware scheduling (BIAS) strategy postpones the transmission [11], both de-
tecting preoccupied frequency bands by monitoring PERs on all channels. The overlap avoidance
(OLA) schemes proposed in [12] are based on packet scheduling and traffic control. There are
also hybrid methods that combine AFH and Bluetooth carrier sense (BCS) [13] or combine power
control, listen-before-talk (LBT) and AFH [14] to achieve improved performance.

The center control mechanism needed for collaborative schemes [8, 15] confines their appli-
cations to certain situations. Power control methods [9, 10] depend on the accuracy of channel
sensing and can not provide much improvement if the Bluetooth device is very close to the inter-
fering device. Carrier sensing based schemes inevitably suffers from the hidden terminal prob-
lem [13, 16]. Approaches based on scheduling such as BIAS [11], OLA [12] and master delay
MAC scheduling (MDMS) [17] cause delay in the transmission, hence they may not be bandwidth
efficient. AFH [11] and interference source oriented AFH (ISOAFH) [17] are effective in dealing
with WLAN interference, but not applicable for multiple co-located FH networks. The perfor-
mance of AFH is also dependent on the update rate of the frequency classification to track the
channel dynamics [11]. A hybrid method of power control, LBT and AFH proposed in [14] can
achieve better performance but will add complexity to the application.

In summary, most non-collaborative interference detection and collision avoidance schemes are
developed for coexistence of Bluetooth and WLAN, and they are not applicable to the coexistence
of multiple FH networks, because the frequency channels are constantly changing and the hop
sequence of one network is not known to another.
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B.2.2 Co-channel Interference Mitigation in FH Systems

Instead of avoiding the collision by scheduling, many efforts have been made on interference sup-
pression and mitigation on physical layer. The problem is challenging because when multiple FH
wireless networks coexist in noncooperative scenarios, not only the hop sequences, hop timing/rate
and other parameters such as hop bandwidth and bin-width are unknown to each other, but also
there maybe model order variations even if the number of active emitters remains the same. If the
receiver’s bandwidth is not matched to the hop bandwidth of the emitters, the FH signals may hop
in and out of the observation frequency band of the receiver.

Considerable work has been done on blind interference suppression for FHSS systems using
an antenna array [18, 19]. These approaches aim at interference suppression rather than joint
multiuser detection and hop timing estimation, and most of them require at least the knowledge of
the hop sequence of the user of interest, and their interference nulling capability is bounded by the
degrees of freedom in the adaptive array. Multiuser detection for FH systems have been considered
in [20, 21]. They assume that the hop sequences of are known to the receiver, and thus they are
not applicable to noncooperative FH emitters. In [22] the estimation of the hop sequence for a
single user is discussed, while the remaining users are treated as white Gaussian interference. The
approach of [22] is conceptually simple, but assumes perfect channel knowledge.

Without assuming the knowledge of hop sequences, several (semi-)blind methods have been
proposed for hop timing and frequency estimation. For example, with known hop rate and fre-
quency bins, channelized receivers have been proposed for semi-blind hop timing estimation [23,
24]. However, the performance of those receivers degrades rapidly if the channelization is im-
perfect, for example, when there is unknown bandwidth mismatch or carrier frequency offset.
In [25, 26], hop timing and frequency estimators based on the principle of dynamic program-
ming (DP) were developed for blind tracking of multiple FH signals, using either a decoupled ap-
proach [25] or a joint approach [26]. These methods neither assume knowledge of hop sequences
or hop timing, nor rely on channelization, and hence are robust to frequency offset. However,
they require accurate model order information, and thus can not handle bandwidth mismatch. In
addition, the complexity of DP is too high to be feasible for practical implementation. An iterative
maximum likelihood (ML) algorithm is developed in [27] to estimate the hop timing and frequen-
cies with low complexity, but it can only deal with the single-user two-hop case (one hop timing
instant to be estimated).

B.3 Summary of Major Results

In this project, we develop a physical layer method for co-channel interference mitigation and
robust coexistence of multiple FH networks. The main results are summarized as follows.

1. We develop an expectation-maximization (EM) algorithm combined with a 2-D frequency
estimator for hop timing and frequency estimation of multiple FH signals with transmitter-
receiver bandwidth mismatch. The algorithm resolves frequency collision without retrans-
mission. A software testbed is developed by applying the algorithm in Bluetooth piconets.
Simulation results demonstrate the effectiveness of the proposed method.
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2. When there is transmitter-receiver bandwidth mismatch, FH signals may hop in and out of
the observation band of the receiver, which results in model order variation. We design a low
complexity approach for model order variation detection based on the trace of the covariance
matrix of the received signals. This approach outperforms the sliding-window singular value
decomposition (SVD) or minimum description length (MDL) methods.

3. Multidimensional frequency estimation plays an important role in collision resolution of
multiple FH signals. We optimize eigenvector-based multidimensional frequency estimation
by minimizing the estimation error variance.

In the following, upper (lower) bold face letters are used for matrices (column vectors). A∗,
AT , AH , and A† denote the conjugate, transpose, Hermitian transpose, and pseudo-inverse of
A, respectively. We use ⊗ for the Kronecker product, and � for the Khatri-Rao (column-wise
Kronecker) product. We also use Ip for a p× p identity matrix, 0M×N for an M ×N zero matrix,
D(a) for a diagonal matrix with a as its diagonal, A(m) for a sub-matrix of A formed by its first
m rows, and ‖·‖ for the l2 norm.

B.4 Collision Resolution Using an Array with Bandwidth Mismatch

Relying on the principle of expectation-maximization and efficient 2-D frequency estimation, we
develop an EM algorithm to jointly estimate the hop timing and frequencies of multiple frequency
signals without the knowledge of their hop patterns, and it remains operational in the presence of
identical frequencies and bandwidth mismatch. The idea behind the collision resolution algorithm
is that if a hop-free dataset were available, one could model the collided data packets as a mixture of
(modulated) complex exponentials. Cast in proper matrix form, such a signal has a Vandermonde
structure in the time domain. In addition, the use of a uniformly spaced linear array, further induces
Vandermonde structure in the spatial domain. We exploit the 2-D Vandermonde structures and use
a 2-D frequency estimation algorithm that draws upon the rich identifiability and near-optimality
results in [28] to recover the hop frequencies. Hop timing estimates are obtained by coupling the
2-D frequency estimation with the expectation maximization algorithm, thus collided packets can
be recovered without retransmission.

B.4.1 Data Model

Suppose at time t ∈ [tk, tk+1), an M -element uniform linear array (ULA) receives a total of dk

effective signals. Each far field FH signal is from a nominal direction-of-arrival (DOA) with neg-
ligible angle spread. If there exists transmitter-receiver bandwidth mismatch, the FH signals hop
in and out of the observation band of the receiver, which results in model order variations. Here
model order variation refers to the change of dk. The M × 1 baseband received signal vector at the
array output can be written as

x(t) =

dk∑

i=1

a(θi,k)βi,ksi,k(t) + v(t), tk ≤ t < tk+1, (1)
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Figure 1: An illustration of two FH signals

where tk is the k-th system-wide hop instant (hop timing), and dk is the number of effective signals
during the time period delimited in tk ≤ t < tk+1. Here a(θi,k) is the array steering vector, which
can be represented as a(θi,k) =

[
1 θi,k · · · θM−1

i,k

]T , and θi,k = ej2π∆sin(αi,k), where αi,k is the DOA
of the i-th narrow-band signal during the k-th time period, and ∆ is the array baseline separation
in terms of wavelength. In (1), βi,k denotes the complex path loss for the i-th signal that collects
the overall attenuation and propagation phase shift. v(t) is the complex white Gaussian noise
vector. For simplicity of exposition, the transmitted FH signal is assumed to be FSK modulated,
though the algorithm can also accommodate other modulations such as phase shift keying (PSK) or
quadrature amplitude modulation (QAM). The i-th transmitted FH signal is si,k(t) = ejωi,k(t)t. The
power of si,k(t) is absorbed into βi,k. Here the carrier shifts due to hopping or symbol modulation
are treated as conceptually equivalent, albeit of different magnitudes.

An illustration of two FH signals is shown in Fig. 1, where tk denotes a system-wide hop
instant. The two FH signals are asynchronous and have different hop rates. The received signal
in (1) is hop-free between any two adjacent system-wide hop instants. Signal 1 hops out of the
observation band at tk and hops back in at tk+1, so the number of the effective signals in (1) during
tk ≤ t < tk+1 is dk = 1, while during other hop-free segments the model order is 2.

After sampling the signals in (1) with a normalized sampling period, the discrete-time equiva-
lent model becomes

xn =

dk∑

i=1

a(θi,k)βi,ksi,k(n) + vn, nk ≤ n < nk+1, (2)

where n = 0, · · · , N − 1, and N is the total number of snapshots; nk is the k-th hop instant, where
k = 0, . . . , K, and K is the total number of hops. By default we let n0 = 0 and nK = N . The
n-th snapshot of the i-th transmitted signal is si,k(n) = ejωi,k·n, nk ≤ n < nk+1, where ωi,k is the
frequency of the i-th signal during the time period from nk to nk+1 − 1. Since nk is a system-wide
hop instant, it is possible that ωi,k = ωi,k−1 for some i. If ωi,k = ωj,k, a collision occurs. The
objective here is to estimate {nk} and hop frequencies for a given set of observations {xn}

N−1
n=0 ,

with unknown DOAs, hop sequences, amplitudes, and number of effective signals. After these
parameters are obtained, collisions are then resolved.
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B.4.2 Known Hop Timing

If hop timing is known, i.e., nk’s are known, then the received data set can be split into K hop-free
data subsets. Between any two consecutive hop instants, e.g., nk and nk+1, there are dk temporal
frequencies involved. During such a time segment, the k-th received data subset can be written as

Xk = AkBkS
T
k + V k, (3)

where Xk =
[
xnk

xnk+1 · · · xnk+1−1

]
, and Ak, Bk, Sk, and V k are the corresponding matrices

for antenna response, channel attenuation, transmitted signals, and noise. Note that the number
of effective signal is dk (i.e., model order), which can be estimated from Xk by an appropriate
source enumeration method because it is fixed in this subset. A source enumeration method can be
based on rank detection criteria (e.g. SVD [29]) or information theoretic criteria (e.g., the Akaike
information criterion (AIC) [30], MDL [31,32]). SVD requires the knowledge of noise variance for
threshold setting in model order selection [29]. AIC tends to overestimate the number of signals in
the large sample limit, while MDL is shown to be a consistent estimator [31]. Therefore we choose
MDL to estimate dk from Xk, which is to calculate

MDL(m) = − log



∏M

i=m+1 λ
1

M−m

i

1
M−m

∑M

i=m+1 λi




(M−m)(nk+1−nk)

+
1

2
m(2M − m) log(nk+1 − nk), (4)

where λ1 > λ2 · · · > λM are the eigenvalues of the sample covariance matrix of Xk. The number
of signals dk is determined as the value of m ∈ {0, 1, . . . ,M − 1} for which MDL(m) in (4) is
minimized. If dk > M , this method does not work. However, exploiting the inherent structure of
the data matrix Xk, we can use data smoothing to expand the size the Xk while keeping its model
order unchanged. Then, the MDL algorithm can be applied to the expanded data matrix to estimate
the model order even if dk > M (see [33] for details).

After dk is obtained, the estimation of DOAs and frequencies from Xk in (3) can be viewed as
a 2-D frequency estimation problem because both Ak and Sk are Vandermonde matrices. There
are dk frequency components along each of the spatial and temporal dimensions of the 2-D fre-
quency mixture Xk. Various subspace methods can be used to estimate θi,k, βi,k, and ωi,k, for
i = 1, . . . , dk, from Xk. For example, eigenvalue-based algorithms such as estimation of signal
parameter via rotational invariance technique (ESPRIT) [34], unitary ESPRIT [35], joint angle-
frequency estimation (JAFE) [36], matrix enhancement and matrix pencil (MEMP) [37], and
eigenvector-based algorithm such as multidimensional folding (MDF) [28], are all applicable. We
choose the MDF algorithm here because MDF achieves the most relaxed identifiability bound and
is shown to outperform ESPRIT-like algorithms such as JAFE and MEMP, and do not require an
extra frequency pairing step (see [28, 38] for more detail). The description of the MDF algorithm
can be found in [28, 38] and is omitted here.

B.4.3 Hop Timing Estimation

Both the model order estimation by the MDL algorithm and 2-D frequency estimation by the MDF
algorithm need to work with a hop-free data subset. However, here the hop timing is unknown. In
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the following, we develop an EM algorithm that yields joint estimates of hop timing and frequen-
cies. It is shown in [39] that the EM algorithm can be written as

E-step: for 1 ≤ k ≤ K − 1, compute

n
(p)
k =arg min

nk

{∥∥∥∥Xk − A
(p)
k B

(p)
k

(
S

(p)
k

)T
∥∥∥∥

2

F

+

∥∥∥∥Xk−1 − A
(p)
k−1B

(p)
k−1

(
S

(p)
k−1

)T
∥∥∥∥

2

F

}
, (5)

where nk ∈
[
n

(p)
k−1 + 1, n

(p−1)
k+1 − 1

]
.

M-step: compute

φ(p+1) = arg min
φ

{
K−1∑

k=0

∥∥Xk − AkBkS
T
k

∥∥2

F

∣∣∣∣∣n
(p)

}
. (6)

As discussed in Sec. B.4.2, when n(p) is given, the model order can be obtained using the MDL
algorithm and other parameters of φ(p+1) can be obtained by applying the MDF algorithm to the
corresponding Xk’s determined by n(p). It can be observed from (5) and (6) that the proposed EM
approach is actually a sort of decoupled ML algorithm, since n and φ are estimated in the E-step
and M-step respectively in each iteration.

In summary, given a received data block with model order variation and multiple hops, the
EM algorithm first takes a randomly generated or pre-determined n(0) as the initialization for
the EM algorithm. Then, it iterates the following two steps until convergence: the M-step, Eqn.
(6), provides a new estimate of model orders and hop frequencies, which are accomplished by
applying first the MDL algorithm and then the MDF algorithm to data segments according to
the updated assignment; the E-step, Eqn. (5), involves assigning signal segments to the current
estimated parameters that fit them best. Upon convergence, frequencies and complex amplitudes
of different segments pertaining to a particular signal can be associated via their corresponding
DOA parameters, since for a single data subset, frequency and DOA parameters pertaining to
one signal are paired up automatically by the MDF algorithm. Therefore, joint hop timing and
frequency estimation for multiple FH signals is achieved and collisions are resolved. Furthermore,
to improve the performance, in [39] we also develop a low complexity initialization based on the
spectrogram of the received data for the EM algorithm.

B.4.4 Simulation Results

In this section, we first compare the EM algorithm with the iterative ML method of [27], for hop
timing estimation in a single-user two-hop setup (one hop timing instant is to be estimated), which
is the signal model considered in [27]. Then, we evaluate the performance of the proposed EM
algorithm in more general cases.

Performance Comparison for Single-user Two-hop Scenario

For convenience let us denote the iterative ML algorithm of [27] as IML. We compare our EM
algorithm to IML. Suppose that the data sequence length is N = 128 and the signal of a single
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Figure 2: Probability of detection in the single-user scenario.

user hops once, from one frequency to another, in this data sequence. The EM algorithm uses a
receive array with M = 6 antennas, with a baseline separation of half a wavelength of the carrier
frequency. IML uses one antenna. Monte Carlo simulations are carried out to compare the average
performance of these two algorithms. In each of 1000 realizations, we randomly generate not only
the DOA, hop frequencies (ranging from 1 KHz to 58 KHz) and complex amplitudes, but also
the hop instant (ranging from the 30-th snapshot to the 98-th snapshot). Note that in [27] the hop
instant is fixed around the middle of the data sequence. The probabilities of detection for both
algorithms are shown in Fig. 2 (b). Here if the estimated hop instant is the same as the true hop
instant, the detection is considered successful. From Fig. 2 (b), we find that the EM algorithm
significantly outperforms the IML algorithm at low SNR range. This is due to the following two
reasons: (i) the EM algorithm utilizes multiple antennas while IML uses only one antenna; (ii) it
is not shown in [27] whether IML can guarantee identifiability for frequency estimation, while the
MDF algorithm we used here has the identifiability guarantee.

The complexity order of IML to estimate one hop instant for a single user is O(N 2) as shown
in [27]. The proposed EM algorithm has a complexity order of O(KMN 2) for multiple signals
with K hops. Since M � N , we conclude that the complexities of the two approaches for one
hop instant estimation in single user case are of the same order.

Multiple Signals with Multiple Hops

We evaluate the performance of the EM algorithm for the case of multiple signals with multiple
hops. The receiver array has M = 6 antennas. The receiver’s bandwidth is 60 MHz. Three FH
emitters impinge the receiver array with randomly generated DOAs and complex amplitudes. The
hop bandwidth of each FH emitter is 80 MHz, which is occupied by 80 distinct frequency channels
with 1 MHz channel spacing. Therefore there is a transmitter-receiver bandwidth mismatch. The
data size is 6×400. In each realization, hop instants of the three FH signals are randomly generated,
and hop frequencies are randomly chosen from the 80 channels.

For the purpose of performance evaluation, a successful detection of hop instant is defined as
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Figure 3: The EM algorithm for hop timing estimation: (a) probability of detection; (b) probability
of false alarm.

follows: for a given true hop instant, if there exists an estimated hop instant, whose deviation from
the true one is less than or equal to 4 snapshots, then this detection is considered successful. For
a given estimated hop instant, if its distances from all true instants are greater than 4 snapshots, a
false alarm is claimed to have occurred. The average length of a hop-free segment is 80 snapshots,
therefore 4 snapshots represent 5% of that value. Furthermore, the minimum deviation from all
estimated hop instants to a given true hop instant is defined as the estimation error for this hop
instant. In order to normalize the error, we divide it by the average length of a hop-free segment.

Fig. 3 (a) plots the probability of detection of hop instants using the EM algorithm, where both
random (“Rd-ini”) and spectrogram-based (“Sp-Ini”) initializations are tested. The corresponding
probability of false alarm is shown in Fig. 3 (b). The results show that the EM algorithm with
spectrogram-based initialization does a good job for hop timing estimation, given the fact that
the hop sequences and model order variations are unknown. It can be seen that the probability
of detection is about 95% when SNR is at 5 dB, and almost 100% when SNR is greater than 15
dB. Correspondingly, the probability of false alarm is less than 5% at SNR=5 dB, and close to
zero when SNR is greater than 15 dB. The EM algorithm with spectrogram-based initialization
significantly outperforms its randomly initialized counterpart.

Because of using a simplified EM algorithm, in the p-th iteration, the k-th hop instant nk is
only searched in the time segment bounded by n

(p)
k−1 and n

(p−1)
k+1 . Hence it is desirable that the

initialization is approximately in-line with each system-wide dwell, which can be achieved by
the spectrogram method as long as the separation of two adjacent hop instants is larger than the
window size of the spectrogram.

B.4.5 An Application Testbed for Bluetooth

A software testbed is developed to apply the collision resolution method in multiple co-located
Bluetooth piconets. The system block diagram is shown in Fig. 4. Transmissions from multiple
piconets are received at multiple devices. Without loss of generality, we assume that each piconet
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Figure 4: Collision resolution in multiple Bluetooth piconets.

consists of a slave and a master device. As shown in Fig. 4, a user in piconet 1 may receive trans-
missions from d piconets. The transmissions are not necessarily synchronized across different
piconets. The channel is assumed to be flat-fading, though the algorithm can be extended to deal
with frequency-selective channels. The proposed receiver consists of a conventional Bluetooth re-
ceiver and a collision resolution unit. We assume that packet collision can be detected, and collided
data packets are sent to the collision resolution unit when collisions occur, while successful packets
are sent directly to the output. For the purpose of performance comparison, we measure the BERs
and PERs of both collision-resolution enhanced receiver (BERe and PERe), and conventional re-
ceiver (BERc and PERc). The software testbed for the collision resolution technique is developed
based on Matlab Simulink environment with a customized graphic user interface. It simulates data
packet transmissions in multiple Bluetooth piconets, and calculates the PER and BER. A number
of parameters can be changed in the testbed to simulate difference scenarios, such as the number
of piconets, data packet length and SNR.

B.5 Low Complexity Model Order Variation Detection

It is shown in the previous section that when there is transmitter-receiver bandwidth mismatch,
model order variation has to be detected before parametric methods can be applied. Relying on a
receiver equipped with a uniform linear array (ULA), we have developed a low-complexity method
for the detection of model order variations in the context of FH networks with transmitter-receiver
bandwidth mismatch [41]. We note that the proposed method is also applicable in other similar
scenarios where the transmitted signals are uncorrelated.

For a given set of observations, one may use a sliding-window to obtain data subsets, and
subsequently apply source enumeration techniques such as SVD or MDL to each subset to estimate
its model order. Model order change points can then be detected by comparing the results as the
data window slides. However, there are several disadvantages to this method. First, the complexity
of SVD and MDL is high. Second, the resolution of estimated timing is limited to the order of the
window size at low SNR, since decisions based on SVD or MDL provide hard-information (the
model order). Third, SVD and MDL break down when the number of signals is more than the
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number of antennas.
Here we also adopt a sliding-window approach. More importantly, for each data subset, we

compute the trace of the signal correlation matrix by exploiting inherent data structure. The trace
sequence provide soft-information that later is fed into a recursive or iterative search procedure
to obtain accurate timing estimates of model order variations. The proposed method is computa-
tionally much simpler than sliding-window SVD or MDL, and it also improves the probability of
detection at low SNR. Moreover, the method works even if the number of effective signals is more
than the number of sensors.

B.5.1 A Trace Calculation Approach

In this section we illustrate how soft-information is obtained by calculating the trace of the corre-
lation matrix of each data subset. Section B.5.2 discusses the subsequent detection of model order
variations based on the soft-information sequence.

The data model is given in (2). Let the window size be P . We assume that the window is
small enough so that the model order changes at most once in each window, which is a realistic
assumption for slow FH systems, and if the sampling rate is fast enough or the analysis window is
short enough, this assumption is also valid for fast FH systems. Without loss of generality, we take
a data subset

X = [xq · · · xq+P−1],

to illustrate the trace calculation approach in the following two cases: constant model order and
varying model order within this data subset.

Case 1: Constant Model Order

If the model order is constant and equal to d during the given window, the M × P data matrix can
be written as

X = AS + W ,

where A = [β1a(θ1) β2a(θ2) · · · βda(θd)], S = [sq sq+1 · · · sq+P−1], and for q ≤ n < q + P ,
sn = [ejω1,n·n ejω2,n·n · · · ejωd,n·n]

T . W is the corresponding noise matrix. Suppose the noise and
signal are independent, the correlation matrix of X is given by

RX = E[XXH ] = ARSAH + RW , (7)

where RS = E[SSH ] is the signal correlation matrix, and the noise correlation matrix is RW =

σ2
wIM . IM is an M × M identity matrix. Assuming that signals from different users are uncorre-

lated, the signal correlation matrix becomes RS = Id. Hence the trace of RX is given by

tr(RX) = tr(AHA) + Mσ2
w = M

d∑

i=1

|βi|
2 + Mσ2

w, (8)

where we have used the fact that A is a column-scaled Vandermonde matrix. We refer to the trace
of RX as the “soft-information”, which is a linear function of the channel power as shown in (8).
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Notice that the objective here is to detect the change points, rather than the model order itself. If the
change points are known, various source enumeration techniques can be applied, e.g., SVD [29],
MDL [31, 32], and PDL [40]. With finite samples, R̂S ≈ Id, R̂W ≈ σ2

wIM , and the correlation
matrix of X can be estimated as R̂X = 1

P

∑q+P−1
n=q xnx

H
n .

Case 2: Varying Model Order

We now illustrate the soft-information in the presence of a model order change within the given
data subset X . For simplicity, assume that a total of d users are active in the FH system, and at
time q + l, the first user hops out of the observation band. Notice that if more than one users hop
out at the same time, the method detects the model order variation more efficiently because of the
obviously larger change in (8). We can write the data matrix as X = AS + W , where

S = [ sq · · · sq+l−1 sq+l · · · sq+P−1 ] , (9)

and for n < q + l, sn is the same as in Case 1, and for n ≥ q + l, sn is the same as in Case 1 except
that its first element is zero. In this case, Rs 6= Id. In fact, it is shown in [41] that the sample
signal correlation matrix is

R̂S =
1

P

q+P−1∑

n=q

sns
H
n ≈

[
l
P

0

0 Id−1

]
. (10)

Similar to (8), we obtain

tr(RX) = tr(ARSAH) + Mσ2
w =

Ml

P
|β1|

2 + M
d∑

i=2

|βi|
2 + Mσ2

w. (11)

It can be seen that the trace of the estimated correlation matrix with base at n = q is linear in l,
the delay or lag to the change point. If there are multiple changes within the window, the situation
is more complicated. For example, an incoming signal and a vanishing signal in the same window
could cancel each other’s effect on the model order. Therefore we assume that the window size is
small enough that the model order changes at most once within each window.

The previous derivation assumes that A is a Vandermonde matrix. If A is not a Vandermonde
matrix, then in case of fixed model order, (8) becomes tr(RX) =

∑d

i=1 ||ai||
2
2 +Mσ2

w, where ai is
the i-th column of A, and || · ||2 stands for vector 2-norm. In the case of varying model order, (11)
becomes tr(RX) = l

P
||a1||

2
2 +

∑d

i=2 ||ai||
2
2 + Mσ2

w. Hence the trace is also linear to the “delay”
to the change point, and the proposed method is still applicable.

In summary, given the observations x(n), 0 ≤ n < N , we can obtain a soft-information
sequence by using a sliding-window as follows yq = tr

(∑q+P−1
p=q xpx

H
p

)
, q = 0, . . . , Q, where P

is the window size and Q = N−P . Let us use an example to illustrate y = [y0, . . . , yQ]T . Suppose
a data set with 600 snapshots is available, and the number of effective signals in the observation
band first changes from three to one, then from one to two, due to frequency hopping. The change
points are 170 and 410. The sequence y is shown in Fig. 5, where the window size is 50 and
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Figure 5: Example of the soft-information sequence obtained by trace calculation using a sliding-
window, where true points of model order changes are 170 and 410.

SNR is 10 dB. SNR is defined as 10 log10(1/σ
2
w). In Fig. 5, we observe that a model order change

manifests itself as a linear variation of the soft-information. The change instants are given by the
points at which the soft-information flattens out.

Comparing to source enumeration algorithms such as SVD and MDL, the trace calculation
method is of much lower complexity, and works even when the number of the signals is more than
the number of antennas. For example, for an M × P data subset, the complexity is about O(MP )

for trace calculation, and O(M 2P + P 3) for SVD and MDL. After obtaining the soft-information
sequence y, the next step is to estimate the change points, nk, for k = 0, · · · , K − 1. This is
discussed next.

B.5.2 Change Detection Methods

We have developed three methods to estimate the change points from a sequence y, which can
be a soft-information sequence obtained by the trace calculation or a hard-information sequence
obtained by SVD or MDL. One method is a recursive search similar to the dynamic programming
principle (see, e.g., [42, Chapter 12]), and the other is a decoupled iterative search similar to the
expectation maximization principle (see, e.g., [43]). However, we note that since the detection is
not maximum likelihood, and we do not pursue dynamic programming nor expectation maximiza-
tion algorithms. The third method is a simple low-complexity difference approach to estimate the
change points from the soft-information sequence. More details can be found in [41].

B.5.3 Simulation Results

We present simulation results to illustrate the performance of the proposed methods. For a given
data matrix with model order variations, we apply the trace calculation (TC), SVD, and MDL ap-
proaches to data subsets obtained using a sliding-window. Subsequently the recursive, the iterative
and the difference detection methods are used to estimate the change points. Notice that SVD and
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Table 1: Probability of detection of model order variation (AWGN channels)

SNR 0 dB 3 dB 6 dB 9 dB
SVD-R 3 28 89 98
SVD-I 3 28 87 98

Pd MDL-R 7 42 91 99
MDL-I 6 42 90 99

% TC-R 51 71 91 97
TC-I 36 53 81 94
TC-D 82 91 97 98

Table 2: Probability of detection of model order variation (flat-fading channels)

SNR 0 dB 3 dB 6 dB 9 dB
SVD-R 33 51 83 95
SVD-I 30 50 84 94

Pd MDL-R 35 55 87 95
MDL-I 33 55 86 95

% TC-R 59 72 84 91
TC-I 46 59 75 85
TC-D 80 87 92 94

MDL return hard-information – the actual decision on model orders for each data subset. The
decision threshold used in the SVD method is chosen according to the modified third bound given
in [29]. The MDL algorithm used here follows [31].

Monte Carlo simulations are conducted to assess the performance of the proposed method.
The sources are three narrow-band FH emitters with randomly generated DOAs. We generate 200

realizations and compute the probability of detection for each SNR. In each realization, the model
order change points and the number of signals that hop in/out of the observation band are randomly
generated. A detection is defined successful when the difference between an estimated instant and
the true one is less than or equal to 5, which is ten percent of the window length 50. Table 1
shows the probability of detection (Pd) using the recursive method (R), the iterative method (I)
and the difference method (D) for AWGN channels, where all βi,k’s are fixed to 1. Table 2 shows
the probability of detection using these three methods for flat-fading channels, where all βi,k’s are
randomly generated with standard complex Gaussian distribution.

For both recursive and iterative detections, the results indicate that the TC based approach
outperforms the SVD and MDL based methods at low SNR regime. This is mainly because that
at low SNR, the resolution of SVD and MDL is limited by the window size, while TC does not
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have this problem since it returns soft-information. The iterative detector slightly underperforms
the recursive detector but comes with much lower complexity. The difference method combined
with trace calculation has the least complexity and competitive performance. When SNR is greater
than 10 dB, all three methods (SVD, MDL, and TC) can achieve a probability of detection close
or equal to 100%.

B.6 Optimizing Eigenvector-Based Frequency Estimation

Multidimensional frequency estimation plays an important role in our proposed interference miti-
gation framework. Recently an eigenvector-based algorithm has been developed for multidimen-
sional frequency estimation with a single snapshot of data mixture. Unlike most existing algebraic
approaches that estimate frequencies from eigenvalues, the eigenvector-based algorithm achieves
automatic frequency pairing without joint diagonalization of multiple matrices, but it fails when
there exist identical frequencies in certain dimensions because eigenvectors are not linearly in-
dependent anymore. We develop an eigenvector-based algorithm for multidimensional frequency
estimation with finite data snapshots. We introduce complex weighting factors so that the algorithm
is still operational when there exist identical frequencies in one or more dimensions. Furthermore,
the weighting factors are optimized to minimize the mean square errors of the frequency estimates.
Simulation results show that the proposed algorithm offers competitive performance when com-
pared to existing algebraic approaches but at lower complexity.

The data model for N -D frequency estimation can take a variety of forms. Here we refer to a
single snapshot N -D frequency mixture as an N -D array X with typical element

xm1,m2,··· ,mN
=

F∑

f=1

cf

N∏

n=1

ejωf,n(mn−1) + wm1,m2,··· ,mN
, (12)

where mn = 1, . . . ,Mn, for n = 1, . . . , N , and Mn is the dimension size of the n-th dimension.
The total sample size is M :=

∏N

n=1 Mn. In (12), the frequencies ωf,n ∈ (−π, π], for f = 1, . . . , F ,
n = 1, . . . , N , and wm1,m2,··· ,mN

is white Gaussian noise with variance σ2. Similarly T snapshots
of N -D frequency data mixtures may be modeled as T N -D arrays, X(t), with typical element

xm1,m2,··· ,mN
(t) =

F∑

f=1

cf (t)
N∏

n=1

ejωf,n(mn−1) + wm1,m2,··· ,mN
(t), t = 1, · · · , T, (13)

where t is the snapshot index, which can be a time index, or trial index in case of multiple trials
of experiments. T = 1 corresponds to the single snapshot case. The frequency set {ωf,n}

N
n=1 is

a N -D frequency component, and there are F such components. The objective of N -D frequency
estimation is to estimate {ωf,n}

N
n=1, for f = 1, . . . , F , from given X(t), t = 1, · · · , T . Notice that

the same data model for multiple snapshot case has been used in [44, 45].
In order to facilitate the presentation, we introduce the equivalent data models based on Khatri-

Rao product. Given (13), define the sample vector x(t) for the t-th snapshot as

x(t) =
[
x1,1,··· ,1(t) x1,1,...,2(t) · · · x1,1,...,MN

(t) x1,1,...,2,1(t) · · · xM1,M2,...,MN
(t)
]T

.
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Furthermore, define N Vandermonde matrices An ∈ C
Mn×F with generators {ejωf,n}F

f=1 such that

An := [a1,n a2,n · · · aF,n] , where af,n =
[
1 ejωf,n · · · ej(Mn−1)ωf,n

]T
, n = 1, . . . , N.

It can be verified that
x(t) = Ac(t) + w(t), t = 1, . . . , T, (14)

where w(t) is the noise vector, and

A := A1 � A2 � · · · � AN , c(t) :=
[
c1(t) c2(t) · · · cF (t)

]T
.

Define

X :=
[
x(1) x(2) · · · x(T )

]
∈ C

M×T , C :=
[
c(1) c(2) · · · c(T )

]
∈ C

F×T ,

then the data model in (14) can be rewritten in matrix form as

X = AC + W , (15)

where W is the corresponding noise matrix. We will need the following lemmas [46].

Lemma 1 Define a set of N -D selection matrices as

J `1,`2,··· ,`N
:= JK1

`1
⊗ JK2

`2
· · · ⊗ J

KN

`N
, (16)

JKn

`n
:=
[
0Kn×(`n−1) IKn

0Kn×(Ln−`n)

]
, (17)

where `n = 1, . . . , Ln, and Kn and Ln are positive integers satisfying Kn + Ln = Mn + 1 for
n = 1, . . . , N . Further define an N -D smoothing operator for the snapshot vector in (14) as

S[x(t)] :=
[
J1,1,··· ,1x(t) J1,1,··· ,2x(t) · · · J 1,1,··· ,LN

x(t) J1,1,··· ,2,1x(t) · · · JL1,L2,··· ,LN
x(t)

]
,

then it can be verified that in the absence of noise

XS(t) := S[x(t)] =
(
A

(K1)
1 � A

(K2)
2 � · · · � A

(KN )
N

)
D
(
c(t)

)(
A

(L1)
1 � A

(L2)
2 � · · · � A

(LN )
N

)T

.

Lemma 2 Given N Vandermonde matrices An ∈ C
Mn×F , with generators {ejωf,n}F

f=1, for n =

1, . . . , N , and a complex matrix C ∈ C
F×T , if we define

B :=

[
CT

ΠT CHD(β)

]
, (18)

where ΠT is a T × T permutation matrix with ones on its anti-diagonal, and

β =
[
e−jβ1 e−jβ2 · · · e−jβF

]T
,

βf =
N∑

n=1

(Mn − 1)ωf,n, (19)

then the rank of the matrix

H̃ := A
(L1)
1 � A

(L2)
2 · · · � A

(LN )
N � B (20)

is min
{

2T
∏N

n=1 Ln, F
}

almost surely, provided that the NF frequencies {ωf,n}
N
n=1, f = 1, · · · , F ,

and the TF elements of C, are drawn from distributions that are continuous with respect to the
Lebesgue measure in ØNF×1 and C

TF×1, respectively.
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B.6.1 The Eigenvector-Based Algorithm for N -D Frequency Estimation

In this section we present the algorithm for N -D frequency estimation from multiple snapshots.
For simplicity of exposition, the algorithm is developed in the noiseless case. The noise effect on
the performance of the algorithm is analyzed in Section B.6.2.

Given (14) in the noiseless case, we can apply the smooth operator S defined in Lemma 1 to
every snapshot x(t), and obtain

XS(t) := S[x(t)] = GD
(
c(t)

)
HT , (21)

where

G := A
(K1)
1 � A

(K2)
2 · · · � A

(KN )
N , H := A

(L1)
1 � A

(L2)
2 · · · � A

(LN )
N .

The positive integers Kn and Ln, n = 1, · · · , N , are chosen such that

Kn + Ln = Mn + 1, 1 ≤ n ≤ N. (22)

To further explore the data structure, we can perform the forward-backward smoothing on the data
vector x(t) in (14). Define y(t) := ΠMx∗(t), where ΠM is an M×M permutation matrix with
ones on its anti-diagonal. It can be verified that y(t) = Ac̃(t), where c̃(t) = [c̃1(t), c̃2(t), · · · , c̃F (t)]T ,
with c̃f (t) = c∗f (t)e

−jβf , and βf is defined in (19). Applying the same technique to y(t) that we
used to construct XS(t) from x(t), we obtain

Y S(t) := S[y(t)] = GD
(
c̃(t)

)
HT .

We then collect all the smoothed data matrices to obtain

X̃ :=
[
XS(1) XS(2) · · · XS(T ) Y S(T ) Y S(T − 1) · · · Y S(1)

]
. (23)

It can be verified that
X̃ = G(H � B)T = GH̃

T
, (24)

where B and H̃ are defined in (18) and (20), respectively. A key step of our algorithm is the con-
struction of X̃ to ensure that it is of rank F almost surely. Note that similar smoothing technique
has been used in [44], but its relation to the Khatri-Rao product is not explored. In (24), since G

is the Khatri-Rao product of multiple Vandermonde matrices, G is almost surely full column rank
if
∏N

n=1 Kn ≥ F . According to Lemma 2, if 2T
∏N

n=1 Ln ≥ F , H̃ has full column rank almost
surely. According to the Sylvester’s inequality [47]

rank(G) + rank
(
H̃

T )
− F ≤ rank

(
GH̃

T )
≤ min{rank(G), rank

(
H̃

T )
},

hence X̃ is of rank F almost surely. The singular value decomposition (SVD) of X̃ yields

X̃ = U sΣsV
H
s , (25)
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where U s has F columns that together span the column space of X̃ . Since the same space is
spanned by the columns of G, there exists an F × F nonsingular matrix T −1 such that

U s = GT−1. (26)

Similar to the IMDF algorithm [48], once the signal subspace U s is obtained, we can construct
two matrices from U s whose general eigenvalues are the exponentials of the first dimension, and
then use the general eigenvectors to estimate N -D frequencies. However, as mentioned before,
the IMDF algorithm fails when there exist identical frequencies in the first dimension since the
eigenvectors are not linearly independent anymore. Furthermore, it has been shown in [48] that
the performance of the IMDF algorithm is severely degraded if there are close frequencies in
the first dimension. To address this problem, in the following, we present a method to construct
two matrices whose general eigenvalues are weighted sum of the N -D exponentials. The N -D
frequencies are still resolved from the general eigenvectors.

We define two selection matrices J 1 and J2 as

J1 := J1,1 ⊗ J1,2 · · · ⊗ J1,N , J2 :=
N∑

n=1

αnJ̃2,n, (27)

where J1,n =
[
IKn−1 0(Kn−1)×1

]
, J2,n =

[
0(Kn−1)×1 IKn−1

]
, J̃2,n = (J1,1 ⊗ · · · ⊗ J1,n−1) ⊗

J2,n ⊗ (J1,n+1 ⊗ · · · ⊗ J1,N ).
Here {αn}

N
n=1 are complex weighting factors, which can be randomly chosen initially. As we

will show in Section B.6.2, the MSEs of the frequency estimates are affected by these weighting
factors in the noisy case. Next, we obtain two equal-sized matrices U 1 and U 2 by

U 1 := J1U s, U 2 := J2U s. (28)

According to the property of Khatri-Rao product [49]: (A ⊗ B)(C � D) = AC � BD, it can
be verified that

U 1 = PT−1, U 2 = PD(ζ)T−1. (29)

where P = A
(K1−1)
1 � A

(K2−1)
2 � · · · � A

(KN−1)
N . It is clear that P has full column rank almost

surely if F ≤
∏N

n=1(Kn − 1). In (29), ζ := [ζ1, ζ2, · · · , ζF ]T , and ζf =
∑N

n=1 αne
jωf,n . Therefore

we have
U

†
1U 2 = TD(ζ)T−1.

Clearly we can choose {αn}
N
n=1 to ensure the elements of ζ are distinct even if there exist identical

frequencies in one or more dimensions, but this is not guaranteed by randomly generated {αn}
N
n=1.

We will discuss how to choose the weighting factors in Section B.6.2. T can be retrieved from
the eigen-decomposition of U

†
1U 2 up to column permutation and scaling ambiguity. Suppose that

the eigen-decomposition of U
†
1U 2 gives T sp = TΛ∆, where Λ is a nonsingular diagonal column

scaling matrix and ∆ is a permutation matrix. Once we obtain T sp, we can retrieve P up to column
permutation and scaling ambiguity according to

P sp = U 1T sp = PΛ∆. (30)
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Notice that P is the Khatri-Rao product of N Vandermonde matrices, and there are F columns in
P . The N frequencies of the same N -D component appear in the same column of P . In other
words, for fixed f , {ωf,n}

N
n=1 appear in the same column of P . Thanks to this structure, we can

obtain F N -D frequency components by dividing suitably chosen elements of the aforementioned
columns of P sp. Therefore the column scaling and permutation will not have a material effect
on the algorithm. For this reason, we may drop subscript “sp” from now on as long as it is clear
from the context. Suppose {ejωf,n}N

n=1 appear in the f -th column of P , then each of them can be
obtained by anyone of the following quotients

ejωf,n =
pk,f

pk−K′
n,f

, mod (k − 1, K ′
n−1) ≥ K ′

n, for f = 1, . . . , F, (31)

where 1 ≤ k ≤ K ′
0, pk,f is the (k, f)-th element of P , and

K ′
n :=

{ ∏N

p=n+1(Kp − 1), 0≤n≤N − 1,

1, n = N.
(32)

Notice that the frequencies are automatically paired because the frequencies (ωf,n, n = 1, . . . , N )
of the same N -D component (the f -th component) are obtained from the same column of P .

If the data observations are noisy as given in (14), applying the above algorithm we can obtain
the estimate of P as P̂ . In order to reduce the MSEs of frequency estimates, we use the average
of all the quotients in (31) to obtain an estimate of the N -D exponential. Therefore, ejωf,n can be
estimated by the following average

êjωf,n =
1

µn

K′
0∑

k=1

mod(k−1,K′
n−1)≥K′

n

p̂k,f

p̂k−K′
n,f

, n = 1, . . . , N, (33)

where µn = K ′
0(Kn − 2)/(Kn − 1). The average is also the so-called “circular mean” in direction

statistics [50]. Finally the frequency estimates are obtained by

ω̂f,n = I
(
log êjωf,n

)
. (34)

After the frequency estimates are obtained, the amplitude matrix C can be obtained by solving
(15) using a least-squares approach.

For an N -D frequency estimation algorithm, the maximum number of uniquely resolvable
frequency components in the absence of noise is referred to as its identifiability bound. We sum-
marize our main result on statistical identifiability for the proposed algorithm in the following
theorem [46].

Theorem 1 Given T snapshots of sums of F N -D exponentials as in (13), in the absence of noise,
the parameter set ({ωf,n}

N
n=1, {cf (t)}

T
t=1), f = 1, . . . , F , is almost surely uniquely identifiable by

the proposed algorithm in Section B.6.1, provided that

F ≤ max
Kn+Ln=Mn+1

1≤Kn≤Mn

1≤n≤N

min

(
N∏

n=1

(Kn − 1), 2T
N∏

n=1

Ln

)
, (35)
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where the NF frequencies {ωf,n}
N
n=1, f = 1, . . . , F , and TF complex amplitudes {cf (t)}

T
t=1,

f = 1, . . . , F , are assumed to be drawn from distributions that are continuous with respect to the
Lebesgue measure in ØNF×1 and C

TF×1, respectively.

B.6.2 Optimization of the Eigenvector-Based Algorithm

We have derived the theoretic error variance of the eigenvector-based algorithm in [46]. We have
also derived the Cramér-Rao Bound for multidimensional frequency estimation models [46]. Sup-
pose that ω̂f,n = ωf,n + ∆ωf,n. It is shown in [46] that

η =
N∑

n=1

F∑

f=1

lim
σ2→0

E[∆ω2
f,n]

varCRB(ω̂f,n)
∝ γ(α), (36)

where γ(α) =
∑F−1

f=1

∑F

g=f+1
1

|(ωT
f
−ωT

g )α|
, and ωf = [ωf,1 ωf,2 · · ·ωf,N ]T . To minimize the error

variance, an optimal α can be obtained by

αopt = arg min
α

γ(α), subject to ‖α‖≤1. (37)

The optimization problem (37) is a so called sum-of-ratios fractional programming problem,
which is a difficult global optimization problem [51]. There is no efficient algorithm available to
solve it to date. We propose to use grid search in the super-sphere ‖α‖≤1 to find a moderate initial
value of α, then use a Newton type algorithm to find an optimal {αn}

N
n=1. In order to reduce the

complexity, we may set |αn| =
√

1
N

, for n = 1, · · · , N , and the search grid does not need to be
fine (for example, the step size of angle in one dimension can be set to π/F ).

Alternatively we can use the following method to get a moderate initial value of {αn}
N
n=1. If

we define
ε(α) := min

1≤f<g≤F

∥∥(ωT
f − ωT

g )α
∥∥ , (38)

then we have

γ(α) ≤
F (F − 1)

ε(α)
.

If we can solve the following optimization problem

α0 = arg max
‖α‖≤1

ε(α), (39)

the upper bound of γ(α) is minimized. The optimization problem (39) can be solved using a se-
quential quadratic programming (SQP) method, which is a common quasi-Newton type algorithm
available in many optimization packages such as the optimization toolbox in Matlab.

The algorithm using an optimal α for N -D frequency estimation is described in Table 3. Notice
that the first step, which involves the SVD of X̃ , is most computationally complex. But this
step is executed only once. To appreciate the proposed algorithm in Table 3, we compare three
methods to obtain an optimal α. The difference is only in Step 3 of Table 3, where we may: (a)
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Table 3: An improved eigenvector-based algorithm using optimal weighting factors

1. Given (14), follow (21)–(25) to obtain U s.

2. Randomly select α subject to |αn| =
√

1
N

, n = 1, . . . , N ,

compute {ω̂f,n}
N
n=1, f = 1, . . . , F , using (27)–(34).

3. Based on {ω̂f,n}
N
n=1, for f = 1, . . . , F , obtain an updated αopt

by first solving (39) using SQP to get initials, then solving (37)
using a Newton method.

4. Compute updated {ω̂f,n}
N
n=1, 1 ≤ f ≤ F , with αopt using

(27)–(34).

5. Iterate Steps 3 and 4 until frequency estimates converge (typ-
ically one execution of Steps 3-4 is sufficient).

using the solution of (39) as αopt, referred to as “Minmax” here; (b) using the solution of (39) as
initials, then solving (37) to obtain αopt, referred to as “Minmax+Newton”, which is the proposed
algorithm; and (c) solving (37) by grid search first then refine it using a Newton method, referred
to as “Grid+Newton”. These approaches are applied to estimate three 3-D frequency components
from 3 snapshots of 6 × 6 × 6 noisy data samples. Fig. 6 (a) depicts the Root Mean Square
Error (RMSE) versus Signal-to-Noise Ratio (SNR). The RMSE is obtained by averaging over all
frequencies after only one iteration of Steps 3-4, except for the case indicated with “Random α”
where only Steps 1-2 are executed. The corresponding CRB on STD is also plotted.

It can be seen from Fig. 6 (a) that the three optimization methods provide similar perfor-
mance, and all outperform the case with randomly chosen α. It turns out one iteration of Steps
3-4 is sufficient, as demonstrated by Fig. 6 (b), where we plot the RMSE of frequency esti-
mates versus the number of iterations of Steps 3-4. Zero iteration corresponds to the case with
only randomly chosen α. We observe that one execution of Steps 3 and 4 is sufficient as further
iterations only provide negligible performance improvement if any. It can be seen that “Min-
max+Newton” and “Grid+Newton” are comparable, and both are slightly better than “Minmax”.
Because “Grid+Newton” has a higher complexity than “Minmax+Newton”, we choose “Min-
max+Newton” with one iteration as the proposed algorithm in Table 3 for optimizing the weighting
factors, which is the algorithm used in the simulations of Section B.6.3.

B.6.3 Simulation Results

In this section we present the Monte Carlo simulation results to demonstrate the performance
(measured by RMSE) of the optimized eigenvector-based frequency estimation algorithm, which
is also compared to other N -D frequency estimation algorithms as well as the associated CRB.
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Figure 6: (a) RMSE of different optimization methods versus SNR; (b) RMSE of different opti-
mization methods versus the number of iterations of Steps 3-4.

2-D Identical Frequency Estimation from Single Snapshot

In the first experiment, the proposed algorithm, MEMP [37], Unitary ESPRIT [44] and 2-D ES-
PRIT [34] are applied to estimate three 2-D frequency components from a 20×20 noisy data set.
The amplitudes, cf (1) for f = 1, . . . , F , are set to be one for this case. The three frequency pairs
are (ω1,1, ω1,2) = (0.55π, 0.20π), (ω2,1, ω2,2) = (0.60π, 0.20π), and (ω3,1, ω3,2) = (0.60π, 0.25π).
Notice that there are identical frequencies in both dimensions, which is a case that the IMDF al-
gorithm fails to deal with. Fig. 7 depicts the performance comparison. In Fig. 7 (a), we plot the
RMSE of various algorithms and the average CRB on STD in the two dimensions. The RMSE
results are averaged over all frequencies and obtained through 1000 realizations. In Fig. 7 (a),
“Proposed algorithm” refers to the one with one iteration of Steps 3-4 using “Minmax+Newton”.
For our proposed algorithm, the smoothing parameters ({Kn}

2
n=1, {Ln}

2
n=1) are chosen such that

the identifiability bound can be achieved. The parameters for other algorithms are chosen accord-
ing to their respective references. As shown in Fig. 7 (a), the proposed algorithm offers comparable
performance as that of Unitary ESPRIT, and outperforms 2-D ESPRIT and MEMP.

In Fig. 7 (b), we compare the optimized weighting factors to randomly chosen ones, where
“Random α” means zero iteration of Steps 3-4 in Table 3. The theoretic RMSE is obtained with
an optimized α by solving (37) using the true frequencies, which serves as a benchmark since in
our algorithm α is optimized when the true frequencies are unknown. It is clear that the proposed
algorithm significantly outperforms the one with random weighting factors, and the simulated
RMSE of the proposed algorithm matches well to the theoretic RMSE for moderate to high SNR.

2-D Close Frequency Estimation from Multiple Snapshots

In the second experiment, the proposed algorithm, Unitary ESPRIT and RARE are applied to
estimate three 2-D frequency components from 10 snapshots of noisy data, each of size 12×12, as
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Figure 7: (a) Comparison of different algorithms for 2-D frequency estimation from single snap-
shot; (b) Comparison of optimized α and randomly chosen α.

given in (14). The amplitudes, cf (t), for f = 1, . . . , F and t = 1, . . . , T , are drawn from a complex
Gaussian distribution. The three frequency pairs are (ω1,1, ω1,2) = (0.72π, 0.62π), (ω2,1, ω2,2) =

(0.74π, 0.58π), and (ω3,1, ω3,2) = (0.76π, 0.60π). Notice that frequencies are close to each other
in both dimensions. Fig. 8 depicts the simulated RMSE of various algorithms, along with the
corresponding CRB and the theoretic RMSE of the proposed algorithm. Multidimensional data
smoothing is also performed for the Unitary ESPRIT algorithm and the RARE algorithm. It can be
seen from Fig. 8 (a) that the proposed algorithm offers competitive performance when compared
with the Unitary ESPRIT and RARE algorithms. Note that the proposed algorithm has lower
complexity than these two algorithms, because the proposed algorithm does not require a frequency
pairing step (the Unitary ESPRIT algorithm achieves automatic frequency pairing through iterative
joint diagonalization). Fig. 8 (b) confirms again that optimized weighting factors outperform
randomly chosen weighting factors, and the simulated RMSE of the proposed algorithm matches
its theoretic RMSE at high SNR.

3-D Identical Frequency Estimation from Multiple Snapshots

In the third experiment, the proposed algorithm and the Unitary ESPRIT algorithm are applied to
estimate three 3-D frequency components from 10 snapshots of 6×6×6 noisy data samples. There
are identical frequencies in all dimensions. The amplitudes are drawn from a complex Gaussian
distribution. Fig. 9 shows the performance comparisons. From Fig. 9, we notice the proposed
algorithm also offer competitive performance in 3-D frequencies estimation compared to the Uni-
tary ESPRIT algorithm. Because the pairing strategy of RARE algorithm is not applicable when all
three dimensions have identical frequencies, we do not include RARE in this experiment. Notice
that the simulated RMSE of the proposed algorithm matches its theoretic RMSE for moderate to
high SNR range.
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Figure 8: (a) Comparison of different algorithms for 2-D frequency estimation from multiple snap-
shots; (b) Comparison of optimized α and randomly chosen α.

B.7 Conclusions

In this project we have proposed a signal processing framework for co-channel interference mit-
igation when multiple FH network coexist. The EM algorithm jointly estimates hop timing and
frequency estimation of multiple FH signals, with unknown hop sequences and possible bandwidth
mismatch. A simple initialization step based on the data spectrogram gives initial estimates of hop
timing for the EM algorithm. Simulation results have shown that the EM algorithm is capable of
obtaining the operation characteristic of noncooperative FH emitters. When there is a transmitter-
receiver bandwidth mismatch in multiple FH networks, the model order changes evenif the number
of active emitters does not vary. We have designed a low-complexity approach for model order
variation detection based on the trace of the covariance matrix of the received signal. Simulation
results demonstrate that the model order variation detection approach outperforms those based on
sliding widow SVD or MDL.

As multidimensional frequency estimation plays an important role in collision resolution when
multiple FH networks coexist, we have also proposed an eigenvector-based algorithm for N -D
frequency estimation from multiple data snapshots. We have analytically quantified the identifi-
ability (in the noiseless case) and the performance (in the noisy case) of the proposed algorithm.
It is shown that our algorithm offers the most relaxed statistical identifiability bound to date. It
remains operational when there exist identical frequencies in one or more dimensions, due to the
adoption of weighting factors. Furthermore, a low-complexity (one iteration) approach is devel-
oped to optimize the weighting factors by minimizing MSEs of frequency estimates. Simulation
results show that the proposed algorithm offers better or competitive performance when compared
to existing algebraic approaches for N -D frequency estimation, but at lower complexity since fre-
quency estimates are automatically paired without multiple iterations of joint diagonalization (as
in the Unitary ESPRIT) or requiring an extra pairing step (as in MEMP or RARE). It is shown that
the optimized weighting factors significantly outperform randomly chosen weighting factors.
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Figure 9: (a) Comparison of different algorithms for 3-D frequency estimation from single snap-
shot; (b) Comparison of optimized α and randomly chosen α.
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